YALE LIFESCIENCES
PITCHFEST

SCHEDULE

9:00 PITCH BLOCK 1
10:30 PITCH BLOCK 2
12:00 LUNCH
1:00 PITCH BLOCK 3
2:30 PITCH BLOCK 4
4:00 RECEPTION & AWARD CEREMONY
Office of Cooperative Research

Since its founding in 1982, the Yale Office of Cooperative Research (OCR) has built a significant portfolio of inventions and patents and has grown into an engine of regional economic development. Its mission is to facilitate the translation of research from Yale’s labs into products and services that benefit society. OCR is recognized as a leading force for catalyzing economic growth by identifying, counseling and nurturing early-stage technologies and guiding the transition into robust companies.

OCR Central Campus
433 Temple Street
New Haven, CT 06511
203.436.8096
203.436.8086 (fax)
OCR@yale.edu

OCR Medical Campus
2 Church Street South
Suite 203
New Haven, CT 06519
203.785.6209
203.785.6165 (fax)
OCR@yale.edu

About The Blavatnik Fund
For Innovation at Yale

The Blavatnik Fund for Innovation at Yale, a $25 million fund, bridges the gap between innovative, early-stage life science research and successful development of high-impact biomedical products.

The Blavatnik Fund for Innovation at Yale supports Yale faculty in the commercialization of applied research and technology in the life sciences. A significant obstacle to the development of early-stage university discoveries is the lack of funding for the proof-of-concept and validation studies needed to demonstrate commercial potential. To overcome this barrier, the Fund provides funding and business development support to help validate nascent technologies and identify potential industry partners to advance these technologies to the marketplace.

The Fund seeks to support innovative, investigator-initiated research aimed at extending preliminary observations, with proof-of-concept and the generation of robust intellectual property as key objectives. The Fund is designed to accommodate projects of varying magnitude, as appropriate. Its primary goal is to advance technologies to the point where additional support from industry and/or technology transfer is achieved. Supported projects may include such areas as therapeutics, diagnostics/biomarkers, medical devices, or research instruments, among others.

The expected goal of completed projects will be partnerships with industry, through licenses to existing biopharmaceutical companies and startup firms (some launched from the Fund-supported technology) or via major industry-sponsored research agreements. It is expected that these alliances will lead to additional industry-sponsored research support. The Fund is structured as a sustainable, “evergreen” program, with a portion of the revenue from successfully launched technologies cycled back to support ongoing and future Fund projects.

The Blavatnik Fund is supported by a grant from the Blavatnik Family Foundation
Thank you to our sponsors:

Accelerate Biologics Innovation Partnering with GenScript

Monoclonal antibody
Bispecific antibody
Cell Therapy
Gene Therapy

BioPath
Bioscience Academic and Career Pathway
A Partnership between the City of New Haven and Southern Connecticut State University

PROGRAM FUNDING PROVIDED BY NEW HAVEN INNOVATION COLLABORATIVE
Targeting the nucleolus for cancer therapy

We are seeking seed funding to advance screen hits to lead compounds for first-in-class cancer therapeutics. We have applied a unique, robust, and comprehensive image-based assay developed in our laboratory to discover small molecule inhibitors of nucleolar function. The nucleolus has recently emerged as a promising new target for anti-cancer therapies. Results from pilot screens on FDA-approved drugs reveal 83 unique hits that include known and putative antineoplastic agents based on excellent Z scores. Current efforts are focused on screening the Life Chemicals Compound library to discover small molecules with unique chemistry.

Business Development Lead: David Lewin

EliV5: First-in-Class Antifungal Agents

Fungal infections are responsible for more than one billion clinical cases worldwide each year resulting in more than 1.5 million deaths. New classes of anti-fungals are desperately needed, particularly with the emergence of multidrug resistant strains. To address this need, EliV5 Therapeutics is developing new classes of anti-fungals that disrupt the first and essential step in CoA biosynthesis catalyzed by the pantothenate kinase, PanK. We completed a screen of ~160,000 small molecules against Aspergillus PanK and identified several lead and selective inhibitors. The primary focus of this application is to evaluate the efficacy, pharmacological properties and safety of these compounds.

Business Development Lead: John Puziss
Athena Therapeutics - Targeting cancer at its core

Our group recently discovered that tumor-associated mutations in several key genes induce defects in NAD metabolism, a key pathway required for cancer proliferation. We found that NAD defects confer sensitivity to a class of drugs which also target NAD metabolism, called NAMPT inhibitors (NAMPTi’s). Numerous NAMPTi’s have made it to clinical trials, however, most have been shelved after demonstrating limited efficacy along with dose-limiting toxicity. Those trials were performed without biomarkers; toxicities likely arose from escalating doses on patients that were not likely to respond. Athena will develop NAMPTi’s specifically for tumors with mutations that are most likely to respond.

Business Development Lead: Chris Unsworth

Combatting obesity through a novel mechanism

Our work has led, unexpectedly, to the identification of a novel mechanism that controls the production of body heat. This mechanism is impaired in obesity, which may contribute to an imbalance between calories consumed and expended, promoting further obesity. We aim to target this pathway therapeutically by developing compounds that slow the degradation of a proteolytic cleavage product. Clinical application of this therapeutic approach can be guided by pharmacogenetics, and it may be enhanced by combination treatment using approved drugs.

Business Development Lead: David Lewin

Anti-Metastasis Cancer Therapeutics Targeting Vimentin Knob/Pocket Assembly Mechanism

The Bunick laboratory recently discovered a knob/pocket assembly mechanism critical for formation of mature vimentin intermediate filaments. Vimentin’s direct role in cancer metastasis, epithelial-mesenchymal transition, and facilitation of invadopodia (the microtentacles that help cancer cells migrate) make it an attractive therapeutic target. We will harness our discovery to generate vimentin-specific inhibitors that prevent mature filament formation; this is in contrast to existing compounds that aggregate fully formed filaments but are not clinically viable. We expect our approach to lead to first-in-class anti-metastasis drugs for melanoma and other cancers.

Business Development Lead: Lolahon Kadiri
William Chang

Erythropoietin-Secreting Vascular Grafts - EPO-VG
Anemia is one of the most common and costly complications of end stage renal disease because the kidney is the primary source of erythropoietin (EPO) needed for the maintenance of red blood cells. The typical treatment for anemia driven by renal disease is regular and costly administration of recombinant EPO. In the US alone, EPO costs are ~1 billion dollars annually. In this project, we are tissue engineering vascular grafts containing cells that secrete human EPO. These EPO-secreting vascular grafts (EPO-VGs) would function as both hemodialysis conduits and sources for cellular secretion of therapeutic doses of EPO.

Business Development Lead: Hong Peng

Cassius Iyad Ochoa Chaar

A Novel Endovascular Retrieval Device for Inferior Vena Cava Filters
Pulmonary embolism (PE) is a leading cause of preventable hospital-related death. Inferior vena cava (IVC) filters are implantable devices that prevent clots from embolizing from the legs to the lungs. Even though the FDA recommends retrieval of the filter when the risk of VTE or bleeding has resolved, IVC filter removal is technically challenging and sometimes impossible because of tilt and scarring. We developed and patented a device that can safely retrieve filters in any configuration. The generous Blavatnik Grant will be used for in vivo animal experiments.

Business Development Lead: David Lewin

Sidi Chen

MAEGI Medicine - New Paradigm of Immune Gene Therapy
We propose to develop MAEGI, a novel class of therapeutic modality. Unlike all existing immunotherapy such as checkpoint blockade, cell therapy, cancer vaccine, oncolytic virus or broadly acting recombinant proteins, MAEGI is based on direct multiplexed activation of endogenous genes. While MAEGI showed strong pre-clinical efficacy as single agent, its distinct molecular mechanism of action provides an orthogonal approach to combo with various other modalities. This project will perform optimization of an off-the-shelf version of MAEGI, further validate its efficacy and test its potential toxicity, in order to bridge the current develop to the advanced stage of pre-IND.

Business Development Lead: Chris Unsworth

Hyung Chun

Precision Targeting of HDAC IIA for Treatment of Pulmonary Arterial Hypertension
Pulmonary arterial hypertension (PAH) is a progressive fatal disease caused by aberrant proliferation of pulmonary artery endothelial and smooth muscle cells. Previous work in the Chun lab at Yale University has established that epigenetic modification of the transcription factor MEF2 by class IIA histone deacetylases (HDAC4/5) to be a key mechanism in the pathogenesis of PAH. HDAC4 and HDAC5 are the only HDACs upregulated in the lungs of PAH patients. Pharmacological inhibition of HDAC4/5 restored MEF2 activity, reduced proliferation of pulmonary vascular cells from PAH patients, and rescued PAH in rodent models. The overall objective of this program is to develop a novel lead compound and establish efficacy and safety of such a compound in vivo models of PAH.

Business Development Lead: John Puziss
Peripheral arterial disease (PAD), which is a manifestation of diminished blood flow, is a major public health problem whose management costs the US healthcare system $10-20 billion. About 25% of the patients with PAD have multiple concomitant lesions and require multiple arterial access sites. This leads to a higher number of procedures and associated costs. Moreover, multiple access sites also increase associated access site complications and number of interventions over time. With this innovation we introduce a novel technique to treat multiple lesions in patients with peripheral arterial disease by reducing the number of access sites and associated complications and costs.

Business Development Lead: Richard Anderson

Revisiting stilbene clinical trials in the era of microbiome research

Stilbenes are dietary metabolites with polypharmacological activities. While tapinarof ($330 million Dermavant) is in phase 3 trials for the treatment of psoriasis and atopic dermatitis, other members have failed trials for inflammatory bowel diseases (IBDs) due to interindividual variability. Microbiome contributions were not considered. We discovered a bacterial enzyme that transforms stilbenes into novel metabolites with potent biological activities. Indeed, the tapinarof-derived product activates a clinical target with higher potency than the parent drug. The product is also effective at killing multidrug resistant bacteria without developing resistance. We propose that stilbene transformations could explain the interindividual variability in clinical trials.

Business Development Lead: David Lewin

DeTour Sheath System - Single Access Multi-Site Treatment

Peripheral arterial disease (PAD), which is a manifestation of diminished blood flow, is a major public health problem whose management costs the US healthcare system $10-20 billion. About 25% of the patients with PAD have multiple concomitant lesions and require multiple arterial access sites. This leads to a higher number of procedures and associated costs. Moreover, multiple access sites also increase associated access site complications and number of interventions over time. With this innovation we introduce a novel technique to treat multiple lesions in patients with peripheral arterial disease by reducing the number of access sites and associated complications and costs.

Business Development Lead: Richard Anderson

Stilbenes are dietary metabolites with polypharmacological activities. While tapinarof ($330 million Dermavant) is in phase 3 trials for the treatment of psoriasis and atopic dermatitis, other members have failed trials for inflammatory bowel diseases (IBDs) due to interindividual variability. Microbiome contributions were not considered. We discovered a bacterial enzyme that transforms stilbenes into novel metabolites with potent biological activities. Indeed, the tapinarof-derived product activates a clinical target with higher potency than the parent drug. The product is also effective at killing multidrug resistant bacteria without developing resistance. We propose that stilbene transformations could explain the interindividual variability in clinical trials.

Business Development Lead: David Lewin

NCS1 - A New Target for Wolfram Syndrome

Center Pharm is focused on developing therapies for rare and deadly genetically defined disorders. We are focusing on Wolfram Syndrome as a proof-of-concept therapeutic indication. We have generated knowledge involving neuronal calcium sensor-1 (NCS1) as an important modulator of pathogenesis and propose screening strategies to identify new drugs targeting NCS1 stabilization in Wolfram Syndrome patients. Using our preliminary results we have identified a lead molecule that will stabilize cell function in WFS1 KO backgrounds. This molecule will be a first in class drug to slow Wolfram Syndrome disease progression.

Business Development Lead: David Lewin

Development of Small Molecule Therapeutics for Age-related Macular Degeneration (AMD)

Age-related macular degeneration (AMD) is the leading cause of blindness among elderly patients, affecting more than 8 million individuals in the United States alone. Although nutritional supplements are recommended for patients with intermediate risk or advanced AMD, there is still no effective therapy for the 90% of AMD patients with the “dry” or atrophic form. We used a high-throughput screen (HTS) to identify novel compounds that protect RPE cells from oxidative damage.

Business Development Lead: Lolahon Kadiri
Antibody-Mediated Gene Editing

This proposal seeks to advance a new antibody-based gene editing technology. It does not require a DNA cutting agent such as CRISPR – only requires co-administration of the 3E10 antibody with a donor DNA carrying the editing sequence. 3E10 is a cell-penetrating antibody that binds DNA and transports the donor DNA into cells, where it binds to RAD51 to alter the function of the RAD51 DNA repair pathway to promote gene editing. The antibody/donor DNA combination can be given by IV injection and could be applied to genetic disorders such as sickle cell disease.

Business Development Lead: John Puziss

Targeted Therapy for T cell Lymphomas

CXCR5 and its ligand, CXCL13, are expressed on follicular helper T cells and on T cell lymphomas arising from follicular helper T cells, including angioimmunoblastic T cell lymphoma. Outcomes for patients with follicular helper T cell lymphomas are poor with existing therapies. We have developed a small molecule inhibitor of CXCR5 which is potent at nanomolar concentrations in vitro and which has demonstrated activity in a murine PDX model of a CXCR5 expressing T cell lymphoma. We propose to further define the activity of this small molecule inhibitor in PDX and humanized CXCL13/CXCR5 tumor bearing mice.

Business Development Lead: Chris Unsworth

Cancer-Targeting Molecules that Cross the Blood Brain Barrier: Treatment and Imaging of Brain Tumors

We have developed a first in class family of molecules that target a membrane receptor present in the most common metastatic brain tumors (breast, colon, melanoma, lung and others), as well as in primary glioblastoma. These molecules are: 1) conjugated to chemotherapeutic agents for tumor-specific intracellular release, 2) cross the blood brain barrier, and 3) designed to work as potential SPECT/PET tracers for tumor detection. We propose in vitro and in vivo studies to identify the drug conjugates with the best therapeutic and pharmacokinetic profiles and the lowest systemic toxicity. We also plan to advance selected compounds as potential (SPECT/PET) radiotracers for detection of tumor spread.

Business Development Lead: Lolahon Kadiri

A novel chemical approach to target p53 mutation in human cancer

There is currently no treatment that specifically targets p53 mutation, the most common genetic abnormality associated with human cancer. Loss of p53 tumor suppressor function provides cells with a proliferative advantage but renders them susceptible to metabolic stress. We have developed potent and selective inhibitors for PIP4K2A and PIP4K2B, lipid kinases that regulate cell metabolism and are essential for the growth of p53-deficient tumors.

Business Development Lead: Chris Unsworth
Engineering biologies and biomaterials to expand therapeutic functionality

Pearl Bio is an early-stage venture pioneering design and production of next-generation therapeutics and biomaterials for medical applications and beyond. Biology is constrained to the 20 natural amino acids, limiting the ability to site-specifically modify therapeutic proteins to improve half-life, tissue targeting, or assembly. In contrast, chemical synthesis of therapeutics enables access to greater functional diversity, but template-directed synthesis is challenging. Pearl Bio unites the precision of biology with the unlimited diversity of chemistry in a transformative platform that produces therapeutics and biomaterials with tunable properties for applications in oncology, immunology, and rare disease.

Business Development Lead: David Lewin

CynAxis: Immunological approach to provide drug access to the CNS

Vast majority of drugs and biologics fail to enter the brain for treatment of brain cancers and neurological diseases. Our discovery yielded key insights into how the immune system naturally overcomes the blood brain barrier to fight infections. We leverage this insight to enable safe and transient drug access to the CNS using a simple intranasal peptide delivery approach.

Business Development Lead: John Puziss

Therapeutic for Systemic Sclerosis

New biomarker for novel CD8 T cell subset that drives systemic sclerosis immunopathology, including monoclonal antibodies anti-human C10orf128 and new targets for small molecule inhibitor therapy. Monoclonal antibodies recognized 5-10% of circulating T cells. Humanized version of them are likely therapeutic agent for systemic sclerosis after humanization. Also so likely have a monoclonal antibody specific for mouse homolog of C10orf128 to enable an animal preclinical model for T cell depletion studies. There is no effective treatment for systemic sclerosis; 50,000 individuals have Ssc; fatal disease. Potential applications include pulmonary fibrosis, asthma with scarring among others.

Business Development Lead: Lolahon Kadiri

Drugging Fibrodysplasia Ossificans Progressiva

The current proposal focuses on a developed and refined approach that combines the therapeutic advantages of biologics and small molecule inhibitors. Inspired by the mode of action of natural products such as rapamycin, cyclosporine-A and FK-506, we have developed a computational platform for de novo designing of dual inhibitors that can simultaneously engage their targets and (most importantly) augment protein-protein interactions. Employing this strategy and iterative modifications, we have designed and synthesized a mutant selective inhibitor (Kd 230 nM) for Alk2(R206H), depicting a proof-of-concept for this platform towards the treatment of FOP and DIPG.

Business Development Lead: Chris Unsworth
Overcoming PARP Inhibitor Resistance in Cancers - Therapy designed to reinvigorate the effectiveness of PARP inhibitors

PARP inhibitors are promising targeted therapy for cancers with defective homologous recombination (HR) repair. However, as PARP inhibitor become widely used, there will be an increase in patients with PARP inhibitor resistance. To overcome this problem, we have developed DB4, a small molecule drug that inhibits HR repair. Combining DB4 and the PARP inhibitor olaparib inhibits the progression of resistant ovarian cancer and increases the survival time of tumor-bearing mice. Thus, we request the Blavatnik fund to continue developing DB4 for improving its potency and PK properties in vivo and conducting efficacy studies with patient-derived cancer xenograft models in mice.

Business Development Lead: Chris Unsworth

Biologically Selective Drug-Eluting Stent

Currently available drug-eluting stents release drugs such as sirolimus or everolimus, which stop smooth muscle growth to prevent in-stent restenosis. However, they also block endothelial cell growth and create risk of thrombosis and mandate long-term antiplatelet medication. Nevertheless, yearly, 10% of these stents fail due to late thrombosis or stenosis. We discovered a drug combination (Fas ligand and nitric oxide) which inhibits smooth muscle growth more potently than sirolimus or everolimus but does not affect endothelial growth. This project will lead to the development of a next generation DES with a unique biologically selective effect on smooth muscle and endothelium.

Business Development Lead: Hong Peng

Breaking toxin propagation in multiple system atrophy

Numerous clinical trials in amyloidosis have failed as a result of misdirected focus on amyloid states of disease-causing proteins. Pangolin Therapeutics’ (PTx) small-molecule platform, termed Pangomers™, was developed to address this deficiency. The Pangomer™ core structure enables selective targeting of pre-amyloid, toxic oligomers (PAOs). Here, we seek to address Multiple System Atrophy (MSA), an aggressive, orphan-indicated form of Parkinson’s for which there are no approved therapeutics. Our pilot efforts have identified and validated a strategy for development of Pangomer™ analogues that neutralize PAOs from MSA. Additional funding will allow execution of this strategy delivering a lead molecule for pre-clinical advancement.

Business Development Lead: Chris Unsworth

Keep the Antibiotic Miracle Alive

Multidrug-resistant Gram-negative bacilli (MDRGNB) have emerged as a challenging cause of hospital-acquired infections and present a critical need for innovative antibacterial development. Two new oxopyrazole agents targeting penicillin binding proteins (PBPs) based on a non-beta-lactam core have superior MIC50 values to current billion-dollar last resort antibiotics like Ceftazidime/Avibactam or Meropenem. One shows broad Gr- efficacy while the second oxopyrazole is selective for Acinetobacter baumannii. On target, good in vivo PK, no mammalian toxicity, no off-target liability. Seeking funding for definitive in vivo efficacy studies.

Business Development Lead: John Puziss
Thank you to our sponsors:

We are proud sponsors of Yale Lifesciences Pitchfest 2019

shipmangoodwin.com

Contact: J. Dormer Stephen, Partner at 203.836.2803
Targeting Cancer with a Novel Antibody Drug Conjugate

Our goal is to develop a new cancer drug that is an antibody drug conjugate (ADC). It targets the pi subunit of the Gamma Aminobutyric Acid Receptor (GABRP) that is aberrantly expressed in a broad range of solid tumors. The target was discovered by the Pusztai lab and a provisional patent application has been submitted. We will use the Blavatnik Fund to perform affinity maturation, generate humanized anti-GABRP antibody conjugated to emtansine and assess the anti-tumor activity in vitro and in vivo.

Business Development Lead: David Lewin

Developing New Therapeutic Agents Targeting Endocrine FGFs and their Cellular Pathways

The three members of the endocrine FGF family, FGF19, FGF21 and FGF23 are important circulating hormones that regulate a variety of critical metabolic processes. Endocrine FGFs mediate their cellular processes by binding to and activating FGF-receptors (FGFR) in complex with Klotho proteins. Based on the crystal structure of ligand occupied Beta-Klotho new potent engineered endocrine molecules were developed for treatment of metabolic disease that will benefit from therapeutic stimulation of FGF21 cellular pathway such as pancreatitis, Nash and obesity. Moreover, also potent inhibitors including small molecules will be developed for treatment of bone disorders (XLH) and liver cancer, respectively.

Business Development Lead: Chris Unsworth

Oath Endovascular: A Targetable and Bioabsorbable Stent

Our technology combines novelty in bioabsorbable stent technology and regenerative medicine. Our team has unrivaled experience in both technologies and have taken the project funded by the European commission to an advanced stage in development. Our initial therapeutic target will be peripheral vascular disease where there is no comparative technology in use or development. Beyond this, there is potential widespread application of the device and concept to the heart, brain, liver and cancer treatments where the combined technology can provide a unique state of the art therapeutic system.

Business Development Lead: Chris Unsworth

A Small Molecule Drug Candidate Targeting the Ire1α-XBP1 Pathway for Treatment of Polycystic Kidney Disease

Our data shows via genetic and pharmacological studies that the Ire1α-XBP1 pathway is a novel genetic interactor of Pkd1 and can strongly modulate the progression of ADPKD in murine models by protecting Pkd1 kidney cyst cells from apoptosis without impacting their proliferation. Tilting the balance from low to high apoptosis levels (via inactivation of XBP1 on a Pkd1 KO background) given similar proliferation profiles may thus provide a viable therapeutic option in the context of cystic kidney disease. Given that the target pathway in this case is very well characterized and not needed for kidney development or homeostasis, our data offers a potentially exciting therapeutic option for slowing down ADPKD (and possibly ARPKD) by targeting Ire1α-XBP1. Furthermore, we have identified a potent agent that leads to a dramatic decrease in polycystic kidney disease progression in both early and adult mouse models. This agent represents a promising candidate for further preclinical/clinical development for the treatment of ADPKD.

Business Development Lead: Lolahon Kadiri
Novel Linker Technology to Catalyze Targeted Nanomedicines for Broad Diagnostic and Therapeutic Applications

We have developed a novel linker technology that can enable potent targeting of nanomedicines for therapeutic and diagnostic applications. We further have a unique clinical pipeline for development of this technology using ex vivo perfusion of non-transplanted human organs. Our primary lab, the Tietjen lab, has developed a robust pipeline for preclinical research on human kidney and liver with the capacity to expand to heart and lung in the future. This provides a direct path to clinical impact in organ transplantation and will enable broad translation for a variety of indications.

Business Development Lead: John Puziss

Novel Glycoconjugate Platform for Unmet Needs in Diagnostics

We have developed a fast, robust point-of-care diagnostic development platform based on glycoconjugate immunochemistry for common infectious diseases, such as leptospirosis, sepsis, UTI and meningitis that is better than current technologies. To establish proof of principle for our platform, we focus on glycans in leptospirosis, which has a large unmet US and global diagnostics need for veterinary and human disease. In a pilot project, Blavatnik funds would be used for PCT fees, and CRO costs for GLP antigen production, monoclonal antibody production and animal experiments to validate our approach, and would leverage CT Innovations matching funds and SBIR funding.

Business Development Lead: John Puziss
Sarah Bhagat
Sofinnova Investments
Principal

Sarah Bhagat is a Principal at Sofinnova Investments, where she focuses on biopharmaceutical investments. Sarah currently serves as a Board Member for Inozyme and a Board Observer for Aeovian, Akouos, Antiva, Neurana, and NextCure. Prior to joining Sofinnova, Sarah was a postdoctoral fellow in neuroscience at Stanford University in the laboratories of Drs. Robert Malenka and Karl Deisseroth. Sarah received her Ph.D. in Neuroscience from Yale University working with thesis advisor Dr. Stephen Strittmatter. Sarah was also a Venture Fellow for Canaan Partners. Prior to Yale, Sarah worked as a research assistant for The Rockefeller University. Before her time at Rockefeller, Sarah was a Clinical Research Coordinator at Massachusetts General Hospital in the Bipolar Clinic and Research Program. Sarah is also an alumna of Stanford’s Graduate School of Business Ignite Entrepreneurship and Innovation Program and is a member of the Neuroscience Translate Oversight Committee.

Alexandra Cantley
Polaris
Senior Associate

Alexandra joined Polaris in 2019 and serves as a Senior Associate in the New York office. She is primarily focused on early stage biotech investments.

Prior to joining Polaris, Alexandra was part of the initial research team at Inzen Therapeutics, where she helped develop their platform technologies and led early-stage immunology and oncology projects. She moved to Inzen from Vertex Pharmaceuticals, where she held a research fellowship and focused on biochemical assay development for an orphan disease. Alexandra received a PhD in Chemical Biology from Harvard University, where she studied natural product discovery and host-microbe interactions. Alexandra performed her undergraduate studies at New York University.

Brian Bronk, Ph.D.
Sanofi
Head of Business Development, Rare Diseases & Rare Blood Disorders
Global Business Development & Licensing

Brian Bronk joined Sanofi in 2014. He started as a member of the Sunrise team, where he focused on building a portfolio of investments. In 2017, he joined Sanofi’s Business Development team as head of External Innovation, Rare Diseases. In his current role, he and his teams work with senior leadership to define an overall portfolio strategy, and identify and secure external opportunities for each therapeutic area.

Prior to joining Sanofi, Brian was Vice President of Research and Development at Satori Pharmaceuticals. He started his career with Pfizer, rising to the level of Senior Director. Brian and his teams have been involved in the discovery of more than twenty development candidates, including Draxxin™, Convenia™, Cerina™ and Slentrol™. Brian earned his bachelor’s degree from Colgate University. He spent a year as a Fulbright Fellow in Dortmund, Germany, and he received his doctorate in chemistry from the Massachusetts Institute of Technology.

Alex Harding
Atlas Venture
Associate

Alex Harding is an associate and focuses on forming companies based on breakthrough science with the potential to transform therapies for patients with the most serious and intractable illnesses. He is also a practicing physician who sees patients at Massachusetts General Hospital.

Prior to joining Atlas in 2018, Alex completed his residency in internal medicine at Massachusetts General Hospital. He received an MD from Johns Hopkins School of Medicine, where he was selected for the Alpha Omega Alpha medical honors society and was awarded the W. Barry Wood Student Research Award. He graduated from Harvard Business School with an MBA and was a summer associate at SR One, a corporate life sciences venture capital firm. He completed his undergraduate education at Yale University, where he received a BA magna cum laude in history with distinction.

At Atlas, Alex has been involved in starting multiple companies working to bring exciting scientific breakthroughs to patients in diverse therapeutic areas. Alex founded a non-profit company called Water Ecuador, which provided clean and affordable drinking water to thousands of people in a low-income, rural region in Ecuador. He speaks Spanish fluently. Outside of work, enjoys exploring around Boston with his wife and son.
Chieze Ibeneche-Nnewihe, Ph.D.
RA Capital
Venture Associate

Chieze Ibeneche-Nnewihe is a Venture Associate at RA Capital Management. Chieze’s primary responsibility at RA Capital is to identify compelling assets to help facilitate new company creation or investments in emerging seed-stage companies. Prior to this role, Chieze was a Senior Associate on the Landscape Team within the TechAtlas division of RA Capital, where she mapped competitive landscapes in extracellular factors, lysosomal proteins, muscular dystrophies, and ophthalmology. Chieze holds a BS and a PhD in Physics from the University of Texas at Austin. Her doctoral research focused on the underlying physical changes of the cytoplasm of yeast cells in response to glucose starvation.

Alicia Irurzun-Lafitte
UCB Ventures
Partner

Alicia Irurzun-Lafitte joined UCB Ventures in March 2019 as Partner. Alicia joined from M Ventures, the corporate venture arm of Merck KGaA. Since 2014, she was instrumental in the closing of multiple new investments in Oncology, Immunology and Fertility areas in the US and Europe for the M Ventures Healthcare fund. Alicia was also closely involved with the built-up of Merck spin-offs. She served on the Board of Rewind Therapeutics as Director and Artios, iOnctura, Ribometrix, and TocopherRx as Observer.

Prior to ventures, Alicia held roles in global business development at Merck Serono in Geneva and EMD Serono in Boston. During her time in business development she closed multiple early stage transactions and was involved in strategic corporate development initiatives.

Alicia holds a MSc from Leiden University in Biopharmaceutical Sciences. Alicia is based at the UCB Ventures’s Boston office and she lives in New York.

Chau Khuong
OrbiMed Advisors
Partner

Chau Q. Khuong is Partner at OrbiMed Advisors, a global healthcare-dedicated investment firm with approximately $12 billion in assets under management. During his career, Mr. Khuong has been an active lead venture capital investor in innovative drug development and medical device enterprises across all stages and numerous therapeutic areas including oncology, infectious diseases, ophthalmology, gene editing, and the microbiome. He currently serves as a Board director of several public and private companies, including Bellus Health (NASDAQ: BLU), Fusion Pharmaceuticals, Galecto, Graybug Vision, Inspire Medical Systems (NYSE: INSPI), Intellia, NextCure (NASDAQ: NXTC), and ReViral Ltd. He holds a B.S. in molecular, cellular and developmental biology with concentration in biotechnology and an MPH with concentration in infectious diseases, both from Yale University.

Laszlo Kiss, Ph.D.
Pfizer Ventures
Executive Director, WRD and Principal

Laszlo Kiss, PHD is Executive Director, WRD and Principal at Pfizer Ventures. Laszlo is responsible for identifying, evaluating, making and managing equity investments aligned with the future directions of Pfizer, with a current emphasis on neuroscience. He currently has responsibility for Pfizer’s investments in Accelerator NYC, Aquinnah, Autifony, Cortexyme, Magnolia, Simcha, System1, and Yumanity. Laszlo was previously the Global Head Neuroscience, External Science and Innovation, where he was responsible for driving the overall in-licensing objectives, strategies and tactics for growth of the company’s neuroscience therapeutic area. Laszlo has over 20 years of drug discovery, development and management experience. He has a successful track record in leading CNS, CV and Rare Disease drug discovery programs from early exploratory research through clinical development. Prior to joining Pfizer, Laszlo held various roles at Bristol-Myers Squibb, Essen Biosciences, and Merck & Co.
2019 Pitchfest Judges (con’t)

Jonathan Mandelbaum, Ph.D.
Accelerator Life Science Partners
Principal

Dr. Jonathan Mandelbaum joined Accelerator in 2015 to focus on investment opportunity sourcing, due diligence, new company formation, project management, and corporate business development across the Accelerator portfolio. He has supported the oversight and management of several Accelerator portfolio companies, including ApoGen Biotechnologies, Coba Therapeutics, and Lodo Therapeutics.

Prior to joining Accelerator, Dr. Mandelbaum worked in a variety of scientific roles within the drug discovery unit at Millennium: The Takeda Oncology Company, where he led several novel target programs in the early discovery pipeline, and collaborated closely with the business development group to support the evaluation of external partnering and early-stage in-licensing opportunities. He also completed his postdoctoral work at Millennium, where he supported mechanism of action and predictive biomarker discovery work for a late-stage drug discovery program.

Dr. Mandelbaum obtained his Ph.D. with Distinction in Cellular, Molecular and Biophysical Studies from Columbia University and received a B.Sc. with Great Distinction in Biology from McGill University.

Gordon Ng, Ph.D.
AbbVie Inc.
Title Director, Immunology Search and Evaluation

Gordon joined AbbVie in 2018 as a member of the Immunology Search and Evaluation Group. Prior to AbbVie, Gordon was responsible for early clinical and preclinical portfolios and RnD teams at Adagene and at Zymeworks. Gordon held various leadership roles at Amgen and Merck with the primary responsibilities of advancing the pipeline, leading multi-disciplinary teams and developing staff. Gordon obtained his PhD and MSc degrees from the University of Toronto and received his Bachelor’s degree in Pharmacy from the University of British Columbia and licensure as a pharmacist.

Heba Nowyhed, Ph.D.
Vida Ventures, LLC
Senior Associate

Dr. Nowyhed has over 13 years of experience in Immunobiology, and 3+ years of combined experience working with the business development group at LJI and with the OCR office at Yale.

She received her Ph.D. in Immunobiology at Yale University in 2011, and completed her Postdoctoral Fellowship in the Inflammation Department at the La Jolla Institute for Allergy and Immunology in late 2015. There she studied T cell biology and investigated the intrinsic mechanisms that drive the development of T cell lineages in models of acute infection, as well as atherosclerosis, IBD, and other chronic inflammatory settings.

Early 2016, Dr. Nowyhed joined the Research group at Kite Pharma as a Scientist where she played a key role in generated the pre-clinical data packages for 2 IND filings. She went on to lead a pipeline program as a Senior Scientist that resulted in 3 more successful IND filings. As an Associate Director, she successfully established key cross functional collaborations between Research and Product Sciences, developed and lead an Assay and Automation group, as well as lead a team developing next-generation products for Kite’s solid tumor programs. Dr. Nowyhed recently joined Vida Ventures in July 2019.

Kuldeep Singh Neote, Ph.D.
Eli Lilly and Company
Vice President External Innovation

Kuldeep Neote, Ph.D. is Vice President External Innovation at Eli Lilly and Company and is responsible for integrating external innovation into Lilly Research Labs. He was Senior Director at J&J Innovation Center-Boston responsible for New Venture activities for the Janssen R&D in the East Coast. He has been responsible for several academic and biotech collaboration including two opportunities in Canada and also served as the interim Head of JLABS@Canada. Dr. Neote is trained as a Molecular Biologist with an extensive background in drug discovery. He has been focused in the area of Immunology, Inflammation and Oncology and has a passion for implementing cutting edge scientific discoveries into practical drug discovery programs. Throughout his career, he has looked at creative scientific and business development collaborative and partnering opportunities that have resulted in tangible clinical translation of new scientific discoveries working in conjunction with academic and biotech companies. Formerly, Dr. Neote was Research Advisor/Director in Global External R&D at Eli Lilly in Indianapolis, IN and responsible for search and evaluation of Oncology in-licensing opportunities. Prior to Eli Lilly, he was a Discovery Scientist in Pfizer Inc. in Groton, CT. Dr. Neote initiated the Chemokine Receptor Drug Discovery platform that lead to several clinical candidates, and also discovered novel chemokines. Earlier in his career, Dr. Neote cloned one of the first chemokine receptors during his post-doctoral studies in Genentech. Dr. Neote earned her BSc. in Microbial and Cellular Biology at the University of Calgary, Calgary, Canada, and a Ph.D. in Human and Molecule Genetics at the University of Toronto, Toronto, Canada, where he was a major contributor in the understanding of the molecular basis of lysosomal storage diseases, in particular Tay Sachs and Sandhoff’s disease.
2019 Pitchfest Judges (con’t)

Nilay Thakar, Ph.D.
ARCH Ventures Partners
Associate

Nilay Thakar focuses on identifying and evaluating new life sciences technologies and provides operating assistance to early-stage portfolio companies. He has authored 8 peer-reviewed publications in the areas of neuroscience, stem cell biology, intracellular signaling, and epigenetics. Previously, Dr. Thakar led the turnaround of an Australian biotech start-up Stem Cells Limited, served as a Think Tank Advisor at the Australian Academy of Sciences, and worked as an Analyst at Dendright Pty Ltd, a biotech start-up developing a Rheumatoid Arthritis therapeutic. Dr. Thakar also conceived an app to help blind Australians use public transport and was selected a Finalist for Queensland Government Open Data Award.

Dr. Thakar holds a B.S. in Biochemistry (High-Distinction honors), a Ph.D. in Cell Biology from the University of Queensland in Australia, and an M.B.A. from the University of Chicago Booth School of Business.

Jim Tobin, Ph.D.
Johnson & Johnson Innovation
Vice President, Cardiovascular & Metabolic Scientific Innovation

Jim is the Vice President of Cardiovascular & Metabolic Scientific Innovation for Johnson & Johnson Innovation, Boston. He leads the external efforts in metabolism (CKD and NASH) and retinal disease on the east coast of North America. He has over 26 years of drug development experience in the areas of hemostasis, inflammation, muscle degenerative diseases, diabetes and diabetic complications. Most recently, Jim was an entrepreneur-in-residence at Atlas Venture and focused on company formation in the life science sector.

Prior to joining Atlas, Jim held the position of Vice President and Chief Scientific Officer at Pfizer leading a research unit focused on the development of biologics for the treatment of metabolic diseases and hemophilia. Prior to that he held the role of Vice President of Cardiovascular and Metabolic Diseases at Wyeth Pharmaceuticals and led the metabolic disease group with a focus on both small molecule and protein therapeutics in type 2 diabetes and muscle disease. Under Jim’s direction these groups advanced over 15 biologics and small molecules into clinical development.

Jim began his career at Genetics Institute (GI) where he was part of the structure based drug discovery group and was involved in the research and development of a number of biopharmaceutical products in inflammation, transplantation and thrombocytopenia, including the marketed product Neumega.

Jim obtained his PhD in Biochemistry from Brandeis University and completed his NRSA postdoctoral fellowship at Harvard University. He has authored 50 publications in peer-reviewed journals and is the inventor on 10 patents.

Brian Yordy, Ph.D.
F-Prime Capital
Healthcare VC

Brian joined F-Prime Capital in 2018 and focuses primarily on investments in the biopharmaceutical and medical technology sectors. Prior to joining F-Prime, Brian was an engagement manager at McKinsey and Company, where he advised pharmaceutical and medical technology companies on business development, R&D, and strategy topics. Brian holds a Ph.D. in immunology from Yale University and received his B.S. in biochemistry from the University of Notre Dame.

Paul Young, Ph.D.
Merck
Executive Director, Business Development & Licensing

Paul is an Executive Director on the Business Development & Licensing team at Merck. He is focused on search and evaluation of external pipeline opportunities for oncology and immuno-oncology, both as single agents as well as in combination with approved Merck cancer therapies such as Keytruda. Paul has over 25 years of experience in the biopharmaceutical industry. He has a unique career mix of science, strategy, and business development, and deep experience both at small biotech startups as well as global pharmaceutical companies. Prior positions include Head of Technologies, External Science & Innovation, Pfizer; Global Head, External Innovation, EMD Serono; CSO, Syndexa Pharmaceuticals; Head of Operations for Oncology Discovery and Cambridge Science Site Head, Sanofi; VP of Research, Avalon Pharmaceuticals; and Project Leader, Human Genome Sciences. Paul received his B.S. in Biology from Yale University; Ph.D. in Cellular, Molecular, & Developmental Biology from Harvard University, and completed his postdoctoral fellowship at Genentech in Immunology & Molecular Oncology.
Another great event to consider:

BioFuture

Beyond Disruption: The New Age of Healthcare and Technology

BioFuture will feature 80+ thought leaders focused on the game changing **mashup** of biopharma, digital health, big data, AI and more. Participate in candid, unfiltered discussions. Join 550+ attendees from the healthcare ecosystem, including the biopharma, digital medicine and finance communities.

Challenge current wisdom. Debate new trends. Discover new frontiers.

Blavatnik Fellowship Program

The Blavatnik Life Science Fellowship at Yale is designed to identify promising young scientists and business people with a passion for biomedical entrepreneurship, to provide a hands-on experience for building their entrepreneurial skills, while simultaneously providing mentorship and professional development responsibilities.

2019-20 Blavatnik Fellows

- **Jamison Langguth, MPH, MSED**
 2019-20 Blavatnik Fellow
 Jamison.Langguth@yale.edu

- **Zhiyao Lu, Ph.D.**
 2019-20 Blavatnik Fellow
 Zhiyao.Lu@yale.edu

- **Natalie Ma, Ph.D.**
 2019-20 Blavatnik Fellow
 Natalie.Ma@yale.edu

- **Megan Woods, Ph.D.**
 2019-20 Blavatnik Fellow
 Megan.Woods@yale.edu

Eligibility:

Science Track: Be a PhD graduate or post-doctoral associate working in the life sciences, having completed the PhD no earlier than 2013, with at least two years of post-graduate work experience in pharma or biotech.

Business Track: Be a business school graduate having completed the MBA no earlier than 2013, and with at least two years of relevant professional experience in the biopharmaceutical industry.

Contact:

James Boyle, Ph.D.
Director of the Blavatnik Fellowship Program
203-436-8960
james.g.boyle@yale.edu

Lotte Palace Hotel

New York City

April 27-29, 2020
Jon Soderstrom
Managing Director
203-436-8096
jon.soderstrom@yale.edu

Bill Wiesler
Director of New Ventures,
Director of Blavatnik Fund
203-432-5406
bill.wiesler@yale.edu

David Lewin
Senior Associate Director of Business Development
203-785-6038
david.lewin@yale.edu

Christopher Unsworth
Associate Director of Business Development
203-785-3846
christopher.unsworth@yale.edu

Lolahon Kadiri
Senior Business Development Associate
203-785-4164
lolahon.kadiri@yale.edu

Morag Grassie
Associate Director of Blavatnik Fund
203-436-4933
morag.grassie@yale.edu

John W. Puziss
Director of Business Development
203-785-6167
john.puziss@yale.edu

James G. Boyle
Executive Director, Faculty Entrepreneurship & Venture Development
203-436-8960
james.g.boyle@yale.edu

Hong Peng
Associate Director of Business Development
203-785-3074
hong.peng@yale.edu

Richard L. Andersson
Associate Director Business Development
203-436-3946
richard.andersson@yale.edu
May 13, 2020
Yale Science Building

The future is NOW

May 13, 2020 | 8:00AM - 5:00PM | Reception to follow | Yale University

The most significant gathering of early-stage investors on Yale’s campus

A day long event tailored to connect entrepreneurial Yale researchers with investors, corporations, and the broader innovation ecosystem to advance the most exciting innovations and commercial opportunities at Yale.